Performance Tools and Analysis

Scott Parker
Getting Started Workshop: Oct 3 & 4, 2011

Argonne Leadership Computing Facility

g\ U.S. DEPARTMENT OF
.4/ ENERGY

Performance Tools

= Performance tools collect information during the execution of
a program to enable the performance of an application to be

understood and possibly improved

= Different tools collect different information and collect it in
different ways

" |tis up to the user to determine what information to collect,
what tool to use, how to interpret the collected information,
and how to change code to improve the performance

Argonne Leadership Computing Facility

v

Types Performance Information

= Types of information collected by performance tools:
— Time in routines and code sections
— Call counts for routines
— Call graph information with timing attribution

— Information about arguments passed to routines:
e MPI— message size
e |O — bytes written or read
— Hardware performance counter data:
e FLOPS
e Instruction counts (total, integer, floating point, load/store, branch, ...)
e Cache hits/misses
e Memory, bytes loaded and stored
e Pipeline stall cycle

— Memory usage

Argonne Leadership Computing Facility

° 3

Sources of Performance Information

" |nstrumentation:

— Insert calls to performance collection routines into the code to be
analyzed

— Allows a wide variety of data to be collected

— Can only be used on routines that can be edited and compiled, may
not be able to instrument libraries

— Can be done: manually, by the compiler, or automatically by a parser

Argonne Leadership Computing Facility

v

Sources of Performance Information

= Sampling:
— Requires virtually no changes made to program
— Execution of the program is halted periodically via an interrupt source

(usually a timer) and location of the program counter is recorded and
optionally call stack is unwound

— Allows attribution of time (or other interrupt source) to routines and
lines of code based on the number of time the program counter at
interrupt observed in routine or at line

— Estimation of time attribution is not exact but with enough samples
error is negligible

— Require debugging information in executable to attribute below
routine level

— Performance data can be collected for entire program including
libraries

Argonne Leadership Computing Facility

° 5

Sources of Performance Information

= Library interposition:

— A call made to a function is intercepted by a wrapping performance
tool routine

— Allows information about the intercepted call to captured and
recorded, including: timing, call counts, and argument information

— Can be done for any routine by one of several methods:

e Some libraries (like MPI) are designed to allow calls to be intercepted. This

is done using weak symbols (MPI_Send) and alternate routine names
(PMPI_Send)

e LD PRELOAD — can force shared libraries to be loaded from alternate
locations containing interposing routines, which then call actual routine

e Linker Wrapping — instruct the linker to resolve all calls to a routine (ex:
malloc) to an alternate wrapping routine (ex: malloc_wrap) which can
then call the original routine

Argonne Leadership Computing Facility

° 6

Sources of Performance Information

= Hardware Performance Counters:
— Hardware register implemented on the chip that record counts of
performance related events:
e FLOPS - Floating point operations
e L1 cache miss — number of L1 requests that miss

— Processors support a very limited set of counters and countable
events are preset by chip designer

— Counters capabilities and events differ significantly between
processors

— Need to use an API to configure, start, stop, and read counters
— Blue Gene/P:
e Has 256 performance counter registers

e Counters can only count for half the cores on a node at a time

e BG/P events: BGP_PUO _FPU_MULT_1, BGP_PU1_DATA_LOADS
— Complete list at wiki.alcf.anl.gov/index.php/UPC_Events_All

Argonne Leadership Computing Facility

gprof

= Widely available Unix tool for collecting timing and call graph
information via sampling

m Collects information on:
— Approximate time spent in each routine
— Count of the number times a routine was invoked

— Call graph information:
e |ist of the parent routines that invoke a given routine
e |ist of the child routines a given routine invokes
e estimate of the cumulative time spent in the child routines

= Advantages: widely available, easy to use, robust

= Disadvantages: scalability, opens one file per rank, doesn’t
work with threads

Argonne Leadership Computing Facility

° 8

v

gprof

Using gprof:

— Compile all and link all routines with the ‘-pg’ flag
mpixlc -pg -02 test.c ...
mpix1f90 -pg -02 test.f90 ..

— Run the code as usual: will generate one gmon.out for each rank

— View data in gmon.out files, by running:
gprof <executable-file> gmon.out.<id>
e flags:
e -p:display flat profile
e -q:display call graph information
e -|:displays instruction profile at source line level instead of function level
e -C:display routine names and the execution counts obtained by

invocation profiling
Documentation at: wiki.alcf.anl.gov/index.php/Profiling

Argonne Leadership Computing Facility

TAU

The TAU (Tuning and Analysis Utilities) Performance System is
a portable profiling and tracing toolkit for performance
analysis of parallel programs

TAU gathers performance information while a program
executes through instrumentation of functions, methods,
basic blocks, and statements via:

— automatic instrumentation of the code at the source level using the
Program Database Toolkit (PDT)

— automatic instrumentation of the code using the compiler

— manual instrumentation using the instrumentation API
— at runtime using library call interception

Argonne Leadership Computing Facility

10

TAU

= Some of the types of information that TAU can collect:
— time spent in each routine
— the number of times a routine was invoked
— counts from hardware performance counters via PAPI
— MPI profile information

— Pthread, OpenMP information
— memory usage

Argonne Leadership Computing Facility

11

TAU

= Using TAU:
— Choose how you want to instrument and what information you want
to collect by setting the environment variables:

TAU_MAKEFILE = /soft/apps/tau/tau-STAUVERSION/bgp/lib/Makefile.tau-bgptimers-mpi-pdt
TAU_OPTIONS ="'-optVerbose -optNoRevert’

— Compile with the TAU compiler wrappers:
mpif90/mpix1f90 -> tau f90.sh
mpif/77/mpix1lf77 -> tau f90.sh (add -qfixed for Fortran/7)
mpicc/mpixlc -> tau_cc.sh
mpicxx/mpixlcxx -> tau cxXx.sh

— Run the code:
e Some environment variables may be set to control runtime behavior

TAU_COMM_MATRIX= {0, 1}

e Will generate files containing

Argonne Leadership Computing Facility

° 12

TAU

= Using TAU (continued)
— View collected performance data using TAU viewers:

e paraprof: GUI environment for viewing collected performance
information

e pprof: command line tool providing summary information
e PerfExplorer: framework for data mining and knowledge discovery

e Viewers can be run on BG/P (with X-11 forwarding) or installed on local
machine for better performance

= Documentation: Wiki.a|Cf.an|.gOV/index.php/Tuning_and_AnaIysis_UtiIities_(TAU)

Argonne Leadership Computing Facility

° 13

Rice HPCToolkit

= A performance toolkit that utilizes statistical sampling for
measurement and analysis of program performance

= Assembles performance measurements into a call path profile
that associates the costs of each function call with its full

calling context
= Samples timers and hardware performance counters

— Time bases profiling is well supported on the Blue Gene/P

— Hardware performance counter profiling is limited to core O due to
limitations of BG/P hardware

" Traces can be generated from a time history of samples

= Viewer provides multiple views of performance data
including: top-down, bottom-up, and flat views

Argonne Leadership Computing Facility

¥ 14

Rice HPCToolkit

= Using Rice HPCToolkit

— Compile object files as usual adding ‘-g’ flag to include debug info:
mpixlc -g -04 -gnoipa -c routinel.c

— Link as usual but preface with the hpclink command:
hpclink mpixlc -o myprog routinel.o ... -1<lib>

— Run program specifying data to collect, produces hpctoolkit-

myprogram-measurements directory containing performance data:

qsub .. --env HPCRUN_EVENT LIST="WALLCLOCK®@5000" myprog

— Gather information from the executable with hpcstruct,

produces .hpcstruct file:
hpcstruct myprogram

— Correlate collected performance data with information from

executable, will produce hpctoolkit-myprogram-database:
hpcprof -S myprogram.hpcstruct -I "path-to-myprogram-src/*"
hpctoolkit-myprogram-measurements-XXXXXX

Argonne Leadership Computing Facility
15

Rice HPCToolkit

= Using Rice HPCToolkit (continued)

— View performance data:
hpcviewer hpctoolkit-myprogram-database

— Viewer can be run on BG/P (with X-11 forwarding) or installed on local
machine for better performance

= Documentation: wiki.alcf.anl.gov/index.php/Rice_HPCToolkit

Argonne Leadership Computing Facility

° 16

IBM HPCT

= A package from IBM that includes several performance tools:
— MPI Profile and Trace library
— Xprofiler
— Hardware Performance Monitor (HPM) API
— POMP OpenMP Profiling

" Documentation:

— wiki.alcf.anl.gov/index.php/Performance_Tools
— Redbook: High Performance Computing Toolkit for Blue Gene/P

Argonne Leadership Computing Facility

° 17

IBM HPCT

= MPI Profiling and Tracing library

— Collects profile and trace information about the use of MPI routines
during a programs execution via library interposition
— Profile information collected:
e Number of times an MPI routine was called
e Time spent in each MPI routine
e Message size histogram

— Tracing can be enabled and provides a detailed time history of MPI
events

— Point-to-Point communication pattern information can be collected in
the form of a communication matrix

Argonne Leadership Computing Facility

° 18

IBM HPCT

= Using the MPI Profiling and Tracing library
— Recompile the code to include the profiling and tracing library:

mpixlc -o test-c test.c -g -L/soft/apps/current/ibm-hpct/1lib -
Ilmpitrace -1license -lgetarg

mpix1f90 -o test-f90 test.f90 -g -L/soft/apps/current/ibm-hpct/1ib -
Ilmpitrace -1license

— Run the code as usual, optionally can control behavior using
environment variables.
e OUTPUT_ALL_RANKS={yes,no}
e TRACE_ALL_TASKS={yes,no}
e TRACE_ALL_EVENTS={yes,no}
— Default output is MPI information for 4 ranks — rank 0, rank with max
MPI time, rank with MIN MPI time, rank with MEAN MPI time. Can get
output from all ranks by setting environment variables.

Argonne Leadership Computing Facility
19

v

mpiP

= mpiP is a lightweight profiling library for MPI applications

= mpiP provides MPI information broken down by program call
site:
— the time spent in various MPI routines

— the number of time an MPI routine was called

— information on message sizes

= Documentation: wiki.alcf.anl.gov/index.php/Mpip

Argonne Leadership Computing Facility

° 20

= Using mpiP:

— Recompile the code to include the mpiP library

mpixlc -o test-c test.c -L/soft/apps/current/mpiP/1ib/ -1mpiP -L /bgsys/
drivers/ppcfloor/gnu-linux/1lib -1bfd -1liberty -unwind

mpix1f90 -o test-f90 test.f90 -L/soft/apps/current/mpiP/1lib/ -1mpiP -L/bgsys/
drivers/ppcfloor/gnu-linux/1lib -1bfd -1liberty -unwind

— Run the code as usual, optionally can control behavior using
environment variable MPIP

— Output is a single .mpiP summary file containing MPI information for
all ranks

Argonne Leadership Computing Facility
21

PAPI

= The Performance API (PAPI) specifies a standard API for

accessing hardware performance counters available on most
modern microprocessors

PAPI provides two interfaces to counter hardware:
— simple high level interface

— more complex low level interface providing more functionality
Defines two classes of hardware events:

e PAPI Preset Events — Standard predefined set of events that are typically
found on many CPU’s. Derived from one or more native events.
(ex: PAP_FP_OPS — count of floating point operations)

e Native Events — Allows access to all platform hardware counters (ex:

PNE_BGP_PUO_FPU_ADD_SUB_1 — Core zero standard PowerPC
Add/Subtract instructions)

Argonne Leadership Computing Facility

22

v

PAPI

= The BG/P PAPI implementation is not fully consistent with the
PAPI standard semantics due to limitation of the BG/P
counter hardware

= Counts only valid for SMP mode with zero or 1 thread
= Event counts are not reported in process/core context
* |ncorrect/incomplete definition of PAPI preset events
= PAPIimplementation does have definitions for useful

events not defined anywhere else:
" Cache events such as:

= PAPI L1 DCH - Level 1 data cache hits

= PAPI L2 DCM - Level 2 data cache misses

Argonne Leadership Computing Facility

23

PAPI

"= To Use:
— Determine which events to count:

e Can run papi_avail utility on compute nodes to get a list of available PAPI
preset and native events

— Instrument code with calls to PAPI API
— Link code with PAPI library (/soft/apps/current/papi /lib/libpapi.a)
— Run the code

= Documentation:
wiki.alcf.anl.gov/index.php/Performance_Application_Programming_Interface_(PAPI)

Argonne Leadership Computing Facility

¥ 24

HPM

Hardware Performance Monitor (HPM) is an IBM utility and
API for accessing hardware performance counters

— Configures, controls, and reads hardware performance counters

— On Blue Gene/P only the API is available (no hpmcount utility)

API| provides a small number of calls to initialize, start, stop,

and output information from the performance counters

void HPM Init(void) - initialize the UPC unit

void HPM Start(char *label) - start counting in a block marked by label
void HPM Stop(char *label) - stop counting in a block marked by label
void HPM Print(void) - print performance counter data

Two slightly different version of the APl are available on BG/P
— libhpm.a — requires all 4 calls be used, creates 1 output file per rank

— Libmpihpm.a — requires only the start/stop calls, creates aggregated
output file with derived FLOP and memory metrics, also collects MPI
information

Argonne Leadership Computing Facility
25

HPM

"= To Use:
— Insert call to HPM API in code sections of interest

— Link with HPM library:

mpixlc -o test-c test.c -L/soft/apps/current/hpm/1ib/ -1hpm
mpixlc -o test-c test.c -L/soft/apps/current/hpm/1ib/ -1mpihpm

mpix1f90 -o test-f test.f90 -L/soft/apps/current/hpm/1ib/ -1hpm
mpix1f90 -o test-f test.f90 -L/soft/apps/current/hpm/1lib/ -1mpihpm

— Run code as usual, files output at program termination are:
e libhpm —one hpm output file per rank or process
e Libmpihpm —aggregated hpm file containing counter data, small number
of files containing MPI information for selected ranks

" Documentation: wiki.alcf.anl.gov/index.php/High _Level UPC_API

Argonne Leadership Computing Facility

° 26

Darshan

= Darshanis a library that collects information on a programs 10
operations and performance

= All applications compiled using the default MPI wrappers will
use Darshan at run time without any manual steps from the
user

= Upon successful job completion Darshan data is written to a

file named
<USERNAME>_ <BINARY_NAME> <COBALT JOB _ID> <DATE>.darshan.gz
in the directory:
— Surveyor: /pvfs-surveyor/logs/darshan/<YEAR>/<MONTH>/<DAY>
— Intrepid: /intrepid-fsO/logs/darshan/<YEAR>/<MONTH>/<DAY>

Argonne Leadership Computing Facility
27

Darshan

= Darshan data can be viewed by running the summary script:

darshan-job-summary.pl /pvfs-surveyor/logs/darshan/2009/7/27/
carns_my-app_1d114525 7-27-58921 19.darshan.gz --output ~/
job-summary.pdf

" Documentation:

wiki.mcs.anl.gov/Darshan/index.php/Documentation_for ALCF_users

Argonne Leadership Computing Facility

° 28

Steps in looking in looking at performance

®" Time based profile with at least one of the following:
— Rice HPCToolkit
— TAU
— Gprof
= MPI profile with:
— IBM HPCT MPI Profiling Library
— mpiP
— TAU
= Gather performance counter information for critical routines:
— PAPI
— HPM

Argonne Leadership Computing Facility

° 29

BG/P CPU

A
i 128-bi
U Instruction Cache Data Cache "
(32KB) (32KB)
m
I-Cache Controller |3 fe—] MMu —» — | Load/Store Queues
= 64-entry o
v D-Cache Controller
Instruction Branch A
Unit Unit 64
Target BHT é -
Issue Issue édd}l; v 2 3 8
ache ®
0 L 858 &
| i v
E o
E22
£E°F
Complex| Simple Load =
Integer [?:ﬁs Integer [¢~ %ﬁs | store
Pipe Pipe Pipe -
2.5
]
MAC 85=
© &
[I]

PPC450Ax6

Argonne Leadership Computing Facility

v

= 7 Stage instruction pipeline:

Instruction Fetch
Instruction Decode
Issue

Register Access
Pipeline line stage 1
Pipeline line stage 2
Write Back

= Pipelines:

Load/Store (L-Pipe)
Simple Integer (J-Pipe)
Complex Integer (I-Pipe)
Floating Point

e FMA
e Double Hummer

= Dual Issue — can issues two instructions
per cycle, must be to different
pipelines

30

BG/P Memory Hierarchy

. = Cost of memory access IS now
Snoop —
filter M .
meso [t ||) - dominant factor in performance
- = ‘d::«:‘or\' D
Double FPU 1 —’L = 256 bits for i
z > . 512 !1|'s d':n? L3 cache . R
L. o] | [ors |mwwmc FEE S = Blue Gene/P memory hierarchy:
PPC450 128 bits f:l:l /r E) ™ ’ . .
. — L1 Instruction and L1 Data caches:
Double FPU "l e 64
bits .
o o | |5 Shaend - e 32 KB total size, 4 cycle latency, 32-Byte
filter : Shared L3 ¢
= e e | :‘“‘:’ line size, 64-way associative, round-robin
Double FPU L2 1: ;% P :,5:2(]«\:« 72 bits ECC on-oc'hlp
¥ sen || | L 0 o — L2 Data cache:
PPC450 ‘llxbns 1:‘:"‘ '
L e 2KB prefetch buffer, 12 cycle latency, 16
Double FPU
DDR2 DDR2 H H H
I PMU] :;l'::z; Torus I Collective ;,JI:::: E;!:)c([r[:\o:r\‘régf ;o:ll‘r:gir ||nes, 128 byte Ilne Slze
Jrf(; sm.?cib:s Thrcc(?ﬁ(}bus Fouilubal Io(tib:s 13.6 GBIs — L3 Data CaChe:
bidirectional bidirectional barriers or DDR2 DRAM bus
lnlcnupls

e 8 MB, 50 cycles latency, 128-byte line size,
8 way associative

— Memory:

e 2GB DDR-2 at 425 MHz, 104 cycles

Argonne Leadership Computing Facility

° 31

Improving Performance

= Key to achieving high performance is optimal architecture-
algorithm mapping

= Cost of memory access dominates performance — memory is
slow compared to register operations
— Pay close attention to data layout to maximize data locality

"= Maximize instruction issue rate

= Utilize multi-flop floating point instructions:
— FMA — fused multiply-add
— Double Hummer

Argonne Leadership Computing Facility

° 32

Improving Performance
Compiler

Try several different compiler optimization levels to get best
performance
Compiler pragmas and functions:
— #pragma disjoint(*a, *b) — specify that pointers a and b are disjoint
— __alignx(), ALIGNX() — specify the alignment of variables
Built-in and intrinsic procedures:
— C: __lpfd(),,__fpmul(), __fpmadd() ...
— Fortran: LOADPF(), FPMUL(), FPMADD() ...

Inline assembly with asm keyword
Look at what the compiler is doing

— -qreport — produces a list file showing how code was optimized
— -qlist — produces a list file showing object code

Argonne Leadership Computing Facility
33

Improving Performance
Compiler Optimizations

= Common sub-expression elimination — removes redundant calculations of sub-
expressions

. Strength reduction — replaces expensive operations with less expensive operations

" Loop invariant code motion — moves calculations outside of loops if not dependent on
loop iteration

= Constant foIding — computes the values of constant expressions at compile time

= Constant value propagation — replaces variables with constants when having constant
value

® |nduction variable simplification — simplifies computation iteration dependent
variables in loops

= Loop unrolling — performs multiple loop steps in a single iteration, enables software
pipelining and lessens loop overhead

" Dead code elimination — removes unused code

= Register allocation and instruction scheduling — optimizes ordering of
instructions and register assignment

Argonne Leadership Computing Facility

¥ 34

Improving Performance
Libraries

= Use optimized libraries where ever possible:
— MASS, MASSV
— ESSL
— BLAS/LAPACK
— ScalAPACK
— fftw
— p3dfft

Argonne Leadership Computing Facility
35

v

Improving Performance
Floating Point Optimization Techniques

= Loop unrolling

= Software pipelining

= |mprove ration of floating point to load/store operations
= Reduce register spilling

= Aliasing

= Fortran array syntax (operations, copy overhead)
= Eliminate floating point exceptions

= Eliminate unnecessary type conversions

= Avoid expensive special functions (sin, log, sqrt, ...)
= |f statements in loops

® |nline subroutine calls

Argonne Leadership Computing Facility

° 36

Improving Performance
Memory Access Optimization Techniques

= General guideline - Try to increase the spatial and temporal
locality of references

= Data layout

= Loop re-ordering

= Loop fusion

= Minimize stride

= Blocking

= Watch for cache trashing
= Pre-fetching

Argonne Leadership Computing Facility

° 37

Improving Performance
MPI

= Load balance

= Remove unnecessary barriers

= MPI Datatypes for non-continuous data

= Avoid buffer copies

= Aggregate small messages

= Minimize surface to volume ratio of decomposition
= Post receives early

= Use non-blocking send/receives and overlap communication
with computation

= Mapping onto network topology

Argonne Leadership Computing Facility

° 38

